65 research outputs found

    Relationships between magmatism and extension along the Autun-La Serre fault system in the Variscan Belt of the eastern French Massif Central

    Get PDF
    International audienceThe ENE-WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE-SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun-La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun-La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305-295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun-La Serre transtensional fault system

    Zinc-rich clays in supergene non-sulfide zinc deposits

    No full text
    International audienceThe nature and the origin of zinc clays are poorly understood. With the example of the Bou Arhous Zn-Pb ore deposit in the Moroccan High Atlas, this study presents new data for the mineralogical and chemical characterization of barren and zinc clays associated with non-sulfide zinc ores. In the field, white to ocher granular clays are associated with willemite (Zn2SiO4), while red clays fill karst-related cavities cutting across the non-sulfide ore bodies. Red clays (kaolinite, chlorite, illite, and smectite) present evidence of stratification that reflects internal sedimentation processes during the karst evolution. White clays contain 7-Ă… clay mineral/smectite irregular interstratified minerals with less than 20 % of smectite layers. Willemite is partially dissolved and is surrounded by authigenic zinc clay minerals. Together with XRD results, WDS analyses on newly formed clay aggregates suggest that this interstratified mineral is composed of fraipontite and sauconite. CEC measurements support that zinc is only located within the octahedral sheets. These new results support the following process: (i) dissolution of willemite, leading to release of Si and Zn, (ii) interaction between Zn-Si-rich solutions and residual-detrital clays, and (iii) dissolution of kaolinite and formation of interstratified zinc clay minerals that grew over detrital micas

    Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the Late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China

    No full text
    International audienceThe tectonic evolution of the Paleo-Asian Ocean between the North China Block (NCB) and the Mongolia Block (MOB) is a contentious issue, and geodynamic models remain speculative. In an effort to puzzle out this controversy, a paleomagnetic study was carried out on the Silurian to Permian formations in central- eastern Inner Mongolia (China). More than 680 sedimentary and volcanic samples were collected from 86 sites. We have established titanium-poor magnetite and hematite as the principal magnetic carriers. AMS measurements demonstrate negligible deformation of the majority of study rocks with sedimentary fabrics. From primary magnetizations, a Late Devonian and a Permian pole are calculated for IMB at: λ = 46.8°N, φ = 349.1°E, dp = 14.6°, dm = 27.3° with N = 3 and λ = 48.7°N, φ = 3.7°E, dp = 5.2°, dm = 9.1° with N = 6, respectively. Two stages of secondary magnetization are also identified probably due to Early Permian and Early Cretaceous magmatic events. As preliminary results, the comparison of our new paleomagnetic poles with available data from NCB, MOB and Siberia indicates that (1) the paleolatitude of IMB, NCB and MOB are consistent between Late Devonian and Permian, suggesting pre-Late Devonian closure of the Paleo-Asian Ocean and further evaluation of these three blocks as a single entity; (2) post-Permian intracontinental deformation was significant and characterized by block rotations, which are due to strike-slip faulting within the welded NCB-IMB-MOB block

    From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China

    Get PDF
    International audienceAlong active margins, tectonic features that develop in response to plate convergence are strongly controlled by subduction zone geometry. In West Junggar, a segment of the giant Palaeozoic collage of Central Asia, the West Karamay Unit represents a Carboniferous accretionary complex composed of fore-arc sedimentary rocks and ophiolitic mélanges. The occurrence of quasi-synchronous upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the West Junggar. Latest Carboniferous (ca. 300 Ma) alkaline plutons postdate this early phase of folding, which was synchronous with accretion of the Carboniferous complex. The Permian Dalabute sinistral fault overprints Carboniferous ductile shearing and split the West Karamay Unit ca. 100 km apart. Oblique convergence may have been provoked by the buckling of the Kazakh orocline and relative rotations between its segments. Depending upon the shape of the convergence zone, either upright folds and fold with vertical axes, or alternatively, strike-slip brittle faults developed in response to strain partitioning. Sinistral brittle faulting may account for the lateral imbrication of units in the West Junggar accretionary complex
    • …
    corecore